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1 Introduction

DistributedsatellitesystemsisanenablingtechnologyformanyfutureNASA/DoDearthandspace
sciencemissions,suchasMMS,MAXIM,Leonardo,andLISA[1,2,3].Whileformationflyingoffers
significantsciencebenefits,to reducetheoperatingcostsforthesemissionsit will beessentialthat
thesemultiplevehicleseffectivelyactasasinglespacecraftbyperformingcoordinatedobservations.
Autonomousguidance,navigation,andcontrolaspart of a coordinatedfleet-autonomyis a key
technologythat will helpaccomplishthis complexgoal. This is nosmM1task,asmostcurrent
spacemissionsrequiresignificantinputfromthegroundforevenrelativelysimpledecisionssuchas
thrusterburns.WorkfortheNMPDS1missionfocusedonthedevelopmentof theNewMillennium
RemoteAgent(NMRA)architecturefor autonomousspacecraftcontrolsystems.NMRAintegrates
traditionalreal-timemonitoringandcontrolwithcomponentsfor constraint-basedplanning,robust
multi-threadedexecution,andmodel-baseddiagnosisandreconfiguration.Thecomplexityof using
anautonomousapproachfor spaceflight softwarewasevidentwhenmostof its capabilitieswere
strippedoffprior to launch(althoughmorecapabilitywasuplinkedsubsequently,andtheresulting
demonstrationwasverysuccessful).However,the challengesfor distributedsatellitesystemsare
evenmorestringentbecause:

• Therewill typicallybemanyvehiclesthatmustcoordinateto achievethedesiredsciencegoals
of thefleet. Thecomplexityof thetrajectoryplanningandresourceMlocationoptimization
problemstypicallygrowsignificantlywith thenumberof vehicles.

• To reducethe burdenon the groundoperations,thefleetcontrolsoftwaremustbe ableto
interprethigh-levelspecificationsfor the desiredmissionobjectives,perhapsevendirectly
fromscientists.Also,thescienceoperationswill bemoredynamicandwill occuroveramuch
longerlife-time.

• Manymissionswill requirethespacecraftto operatein closeproximityto obtaingoodu-v
planecoverage.Thusfault toleranceandfailuremodehandlingareimperative,andthese
mustbeachievedrapidly.Also,thenumberof failuremodesgreatlyincreasesforlargefleets.

• Communicationdelays,unknownCPUloadingdueto scienceobjectivesandvariousfailures
all contributeto non-deterministiceventtimings. Thiscomplicatesthe synchronizationof
activitiesacrossthefleet.

Distributedsatellitesystemswill requirea fluidintegrationof autonomyandcontrolresearch.To
date,workin the individualareasofsatelliteautonomyanddistributedcontrolhasbeenextensive.
The autonomyareahasfocusedonhigherlevel,reasoninganddecisionmaking,andsciencedata
fusionamongothertopics,withNMRAbeinga milestone.Oneexamplewherethisworkhasbeen
extendedto thecontrolof distributedsatellitesis the ObjectAgent(OA)software,whichis a tool
for developingandimplementingdistributedsoftwarearchitectures.Control work within OA has

focused on a variety of GN_C topics (planning, coordination, navigation, and collision avoidance).

Many of these algorithms typically require extensive computation that will place large demands

on the real-time capabilities of the processors onboard each spacecraft, especiMly as the number

of satellites within the fleet increases. Extrapolation of the work in both of these areas to many

vehicles is often difficult, complex, and typically very inefficient.

Thus there are several critical research areas that must be addressed to make distributed satellite

systems a reality. These include:

• The algorithms must work well for current DSS missions (typically 2-3 vehicles) but scale to

handle the larger fleets (8-16 satellites) that have been proposed for future missions.



• In addition to traditional fault detection and recovery, the algorithms must be robust to

fleet-level faults, loss of shared information, communication latency, relative control and es-

timation, and collisions.

• The computation, information management and communication must be well distributed.

• Robust distributed autonomous GN&C algorithms are required. The flight software must be

flexible and easy to adapt, such as allowing the software blocks to be dynamically loaded.

These topics are the focus of our on-going CETDP research effort. In particular, our research

is focused on the design and implementation of algorithms that can be combined to address the

full set of GN&C issues for formation flying spacecraft. As shown in Figure 1, these include

techniques to perform the relative spacecraft navigation (e.g., with carrier-phase differential GPS);

the distributed fleet planning, coordination, and control; and fleet fault detection and recovery.

Our particular goal is to ensure that these formation flying algorithms can scale to larger fleets,

so an important part of this effort is to investigate algorithms that are consistent with various

implementation architectures - distributed, decentralized, and centralized. Thus this analysis pays

particular attention to the distribution of the communication and computation loads; whether the

desired levels of performance (e.g., mission goals) call be achieved robustly and safely; and to the

implementation of fail-safe modes of operation.

2 Technical Developments

2.1 Formation Flying Estimation and Control Architectures

Formation flying is inherently a distributed prob-

lem, and achieving the mission goals requires the

tight integration of several Ngorithms. Figure 1

shows the complicated information flow between

the various estimation, coordination, and control

algorithms for a typical formation flying control

system. Severn of these algorithms can natu-

rally be decentralized or distributed, but others

require combined or fleet information, and thus

must be performed within a centralized or hier-

archic architecture. Typically, the decision to be

made with regard to architecture design is one of _'-

distribution. Dividing estimation, coordination,

or control algorithms for distribution across the Fig. 1: Formation flying GN&C algorithms.

fleet can provide benefits such as robustness, flex- Implicit that the estimation, coordination,
ibility, computational speed, and improved auton- control would be distributed across the fleet.

omy. Parallel processing, if scaled properly, could

dramatically reduce the computation time compared to a completely centralized architecture. Fur-

thermore, the modularity inherent in distributed architectures usually lends itself easily to expan-

sion. These benefits of distributed architectures, however, must be weighed against the disadvan-

tages, such as increased inter-spacecraft communications, possible non-determinacy of solutions

(synchronization), and higher mission risk stemming from the increase in overall architecture com-

plexity. They key issue here is information management, as significant communication of both raw

data (e.g., GPS carrier phase measurements) and solutions (e.g., estimated positions and velocities,

coordination requirements) must be shared.



Onecomplicationwhenanalyzingvariousinformationarchitecturesis that estimation,coordina-
tion, andcontrolalgorithmsmustbedevelopedfor eachconfigurationto correctlyestablishthe
computationandcommunicationrequirements.Tomakespecificstatementsregardingthebenefits
and/ordisadvantagesof certainarchitectures,it is necessaryto performan in-depthanalysisof
severalestimationandcontrolapproaches.Previousworkcompareddistributed,centralized,and
master-slavearchitecturesfor formationflyingusingearlyObjectAgentbasedsoftware.Thiswork
indicatedthat a distributedarchitectureis thebestat reducingthecomputationalandcommuni-
cationrequirements[4,5]. However,thisworkdid not implementfull GPSestimationalgorithms,
nordid it addressreal-timeissues,or controlfor largerclusters.However,muchworkhasrecently
beendoneon thenavigationandcontrolfor formationflying [6,7], andthesetechniquescanbe
usedin ourcurrentanalysis.Our approachhereis to analyzedifferentcontrolarchitectures,given
acommonsetof basealgorithmsolutions.Althoughchoosinga particularcontrollerandestimator
presentsa point solutionto thefleetGN&Cproblem,this allowsusto makeveryconcretecom-
parisonsbetweenalternativearchitectures.A key milestone in this workhasbeento identifythe
additionalGN&C algorithms required to populate the distributed and centralized navigation and

control architectures that will be investigated further.

2.2 Formation Flying Technologies

This section describes the key technologies that have recently been integrated into the testbed.

Formation Flying Control: Many alternative h)rmation flying control strategies have been

recently proposed. We have focused on using a model-predictive control approach based on linear

programming (LP). A key advantage of this approach is that it can directly include state constraints

(e.g., errorbox limits) and input constraints (e.g., actuator limitations) in the "formation-keeping"

trajectory optimization. A key milestone of recent work has been to develop a direct procedure

for calculating the fleet reference point (called the virtual center) that can be used to determine

the desired states for each vehicle in the fleet [8]. The calculation of this virtual center is based on

measurements available from the relative navigation sensing system (carrier-phase differential GPS)

developed for this application. The selection of the reference point includes a weighting on fuel use

across the fleet, which facilitates increased coordination and cooperation within the decentralized

control system. The approach has been demonstrated using fully nonlinear simulations, and the
results demonstrated the reduction in fuel use that can be obtained with this improved cooperation.

Improvements in Initial Conditions: A number of future spacecraft formation flying missions

will require spacecraft to maintain specified separations or relative geometries [9, 10, 11]. These

requirements stem from the need to obtain scientific data simultaneously from widely separated

locations or the need to take data in the same location at frequent intervals [10, 12]. To minimize

control effort, orbits can be chosen that naturally prevent the spacecraft from separating.. One type

of drift-free orbit, known as a passive aperture, is based on the elimination of secular terms from

Hill's equations [13]. The general form of Hill's equations is stated in terms of six initial conditions

that define a satellite's orbit relative to the origin of the Hill's frame (x is the radial direction, y is

the along-track direction, and z is the across-track direction).

In this case, the only term contributing to secular drift is (3y(0) + 6nrefX(0))t. Thus, the condition

to prevent spacecraft separation over time is _)(0) = --2nrefX(0). This approach works well for

formations in circular orbits, where the separation between spacecraft is on the order of 100m.

However, the accuracy of Hill's equations degrades as the inter-spacecraft separation is extended,

so choosing the initial conditions as given above will no longer eliminate secular drift. Alfriend et

al. [14] recently proposed an approach that extends the validity of Hill's equations to larger inter-



spacecraftseparationsbyaddingasetofsecondorderperturbations.Thisapproachisderivedfor a
specificsolutionto Hill's equationswith initial conditionsthat restricttheformationto aprojected
circlein the y-z plane. In this case, the radius of the projected circle is the same for all satellites

in the formation and the position of the satellites in the circle is chosen by an angular offset. This

approach works well but is overly restrictive, because the formation geometry must be specified by
only two initial conditions.

The MMS mission, will require a widely separated regular tetrahedron geometry to fulfill its science

objectives, but the initial conditions available are not sufficient to describe a tetrahedron. In order

to use the nonlinearity correction with MMS, a key milestone of recent work was to extend the

basic approach in Ref. [14] to a more general solution of Hill's equations:

x(t) _-= X(0) COS(nreft ) + X(0...._) s].n(?7,reft )

nref

y(t) = y(0) + 2_(0.___._))[cos(nreft) - 1] - 2x(0)sin(nreft)
nref

z(t) : Z(0) COS(nreft ) -_- -- sin(nreft)
nref

where the relative orbit of each spacecraft in the Hill's frame is

defined by the five initial conditions, x(0), y(0), z(0), _(0), and

_(0). The Hill's solution in Eq. 1 can be used to define initial

conditions corresponding to the corners of a tetrahedron, because

the initial x, y, and z coordinates can be specified independently.

Figure 2 shows a regular tetrahedron with a spacecraft at each

vertex. Lines are shown to highlight the geometry. Using Eq. 1,

any initial velocity conditions will produce a recurring tetrahe-

dron formation in the Hill's frame, but the nonlinearity correc-

tion derived herein can be applied to other geometries that may

require specific initial velocities as well as positions. The new
conditions for drift-free second-order terms can be written in the

form:

(1)

Fig. 2: Regular tetrahedron
formation with 10 km sides

= _/_x(O)2n 2 + 2_(O)y(O)n- _((I) 2- i(O) 2- 2y(O)2n 2- z(O)2n 2)\ (2)Y(0)cn

The secular term cancellation now depends on all five initial conditions from the Hill's solution in

Eq. 1. The nonlinearity correction method developed here can be used to find initial conditions

that substantially reduce secular drift for widely spaced formations, with the capability to specify

5 of the 6 possible initial conditions. This approach has been used to create recurring tetrahedron

formations with sides extending beyond 10 km, whereas previous approaches restricted formations

to have inter-spacecraft separations of approximately 0.1 km.

Planner Development: The previous section presented a way to initialize spacecraft in drift

free formations. In practice, there are always differential disturbances acting on the spacecraft

in a formation that will tend to make the formation drift even if it has been initialized correctly

and control will be required to maintain the formation geometry. A linear programming (LP)

trajectory planning approach has been developed to design fuel-optimized trajectories and station-

keeping control inputs [15]. The b_ic form of the LP is

minllutll subject to Au < b (3)
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whereu is the vector of fuel inputs (AV) at each time step and A, b are functions of the linearized

spacecraft dynamics, initial conditions, and final conditions. The LP determines the control inputs

for a specified time interval that minimizes the fuel cost (the sum of the inputs) while satisfying

the constraints on the trajectory. Constraints to the problem can include: state constraints such as

remaining within some tolerance of a specified point, maximum input values (actuator saturation),

and terminal constraints. This approach can include differential disturbances such as drag and

linearized forms of the differential J2 effects [15]. To complete the low-level control design, the

LP is also embedded within a real-time optimization control approach that monitors the space-

craft relative positions and velocities, and then redesigns the control input sequence if the vehicle

approaches the edge of the error box [15].

A mission with a highly elliptical orbit (e.g., MMS) will require a propagator that accounts for

eccentricity. Two common approaches to propagating relative states in eccentric orbits are Lawden's

equations [16] and Melton's equations [17]. Melton's approach is in the time-domain, but is only

valid for eccentricities up to 0.3, which is much less than that required for MMS [17]. Lawden's

equations are valid for all eccentricities, but are written as a function of the true anomaly. Tillerson

presented a relatively simple strategy of designing the trajectories as a function of the true anomaly,

and then converting back to the time-domain for implementation. However, that is a complex

process to perform in real-time and can introduce errors if the commands are not implemented in

the correct way. A key milestone of recent work was to develop a variation on Lawden's equations

based on a derivation in Ref. [18] that corrects this problem. The following is a linear time-varying

(LTV) propagator ttlat is valid for any elliptical orbit,

where
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and the reference orbit parameters are 0re f - true anomaly, nre f - period, and e - eccentricity. Also,

from Ref. [19]

nref , (e cos Oref + 1)
Oref -- (1 --_2)3/2 [ (eeOSOref)2 + 2CCOSOref + 1] BEef = --2e_'refOrefSinOref(1-- e2)3/2

The propagator is given _ a function of the true anomaly, making it parameter varying. By using

Kepler's equation or a variety of other common techniques, an accurate mapping between elapsed

time and true anomaly of the reference orbit can be created [19]. If such a mapping is created before

the planning step, then 0_f will be a known function of time, and the equations can effectively be

rewritten as being linear time-varying. This result is a simple way to propagate a system in a

highly elliptical orbit using fixed time-steps. This enables the use of the time-varying discretized

form of these dynamics with the LP optimization technique in Eq. 3 and thereby extends the range

of applications where the planner developed in Ref. [15] can be used effectively. Furthermore, the



needfor a real-timedomainconversionwhileexecutingthe resultingplan is eliminated,instead
shiftingaddedcomputationto thepre-planningphase,beforeanyoptimizationtakesplace.

Initial Condition Analysis Results: A key milestone of recent work was the completion

of the investigation of the best models & initial conditions to use in the planning algorithms for

formations with larger baselines. The initial condition correction for nonlinearity (called NL) was

tested against initializing with eccentricity corrections (EC), initializing with both eccentricity

and nonlinearity corrections (NLEC), and initializing ignoring all corrections (NO). In each case, a

tetrahedron with 10 km sides was created in an orbit with a period of 0.0824 days and e = 0.05. The

quality factor QGM was used to compare the approaches [11]. The tetrahedron shape is designed

to appear only at apogee, so measurements of QGM are made once per orbit at whatever point the

shape is most regular. The results for the four initialization cases are shown in Figure 3, which plots

the QGM trend after each orbit. The results clearly show that the EC and NLEC initializations

maintain their shapes much longer than the NO and NL. It is also clear that correctly accounting

for the orbit eccentricity has a signifzcant influence on the quality of the tetrahedron, confirming

the analysis in [18] (NL =_ EC). The improvement from the eccentricity corrected to the combined

nonlinearity/eccentricity corrected initialization (EC ::_ NLEC) is smaller but still clearly important

for reducing the shape deformation over time [14]. A second simulation was conducted with the

2.8 _" "_-x_ _ >_ _ _

2,6 1

2.4 _l

1.2 °t_ o

0 10 20 3o 40 so 80
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Fig. 3: Effect of initial conditions on tetrahe-

dron quality in low Earth orbit (e = 0.05)

_ _o r
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m

Eoce_rk:fi-f a¢<lNoPJIm*adtyCorrections

Fig. 4: Effect of initial conditions on tetrahe-

dron quality - highly eccentric orbit (e = 0.82)

same formation, but with a highly elliptical orbit (period of 1 day, e = 0.82). The results of that

simulation are shown in Figure 4 using 3 - QGM as the metric. The quality of the tetrahedron in

the formation decreases negligibly over 40 orbits and at nearly the same rate for both the EC and

NLEC initializations.

2.3 Planning in Eccentric Orbits

Previous work performed an in-depth exploration of minimum-time and minimum-fuel planning

algorithms for satellites in circular reference orbits [33]. In this work, minimum time or fuel

thruster commands are assumed, and the optimal control problem is solved using a fast, gradient

search method. The initial and final orbits are parameterized in terms of local phase and position,

and a cluster planner is developed which solves the optimal control problem as a function of these

parameters. A realistic implementation of both cluster planning and collision avoidance was shown

last year. Work this year has focused on extending the approach to more practical cases where the
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satelliteclustersarein non-circularorbits.Forexample,asdiscussedin theprevioussection,MMS
isproposingto useorbitswitheccentricitiesrangingfrome_ 0.6-0.9.It is thereforeusefulto have
a plannercapableof givingoptimalperformanceaboutanyellipse.

Thiswork is basedonwritingthe relativedynamicsof a referenceellipticalorbit in time-varying
form; the systempropagationcanbewrittenasa functionof true anomaly0 [16].As shownin
Ref.[33],the initial andfinalstatesfor agivenreferenceradius,trueanomaly,andeccentricitycan
bewritten in a mannerthat issimilarto thecircularcase;therefore,it isagainpossibleto search
for a timeor fuel-optimalseriesof inputsby assumingathrusterprofile.
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The primary difficulty in completing this search is evaluating the contribution of the thrust, which

appears as an integral with no closed-form solution. However, it is possible to circumvent this

problem by noting that the functions within the integrals can be approximated with polynomials.

The original function is broken up into several segments, each of which are captured by separate

polynomials, and the parts are then combined to produce a continuous approximation that is exactly

valid at each of the breakpoints. Because the approximation is continuous, the integral is also

continuous. The functions in the orbits of interest change slowly over time, so the error is typically

less that 1% for a single orbit represented by 16 segments. As withthe circular reference orbit,

the desired switches for the elliptical orbit bring the satellite from the initial state to the desired

final condition with the smallest change in true anomaly. A numerical solver is then employed

to determine these switching angles, with initial guesses for small eccentricities obtained from the

circular case and these are used as initial guesses for orbits with larger eccentricities. The initial

results have been submitted to the 2003 GNC conference [34]. A key milestone in this work was

to demonstrate the approach on a set of simple formation changes, such as those shown in Figure 6.

2.4 Distributed Formation Keeping Controller and Communication Topology Design

An algorithm has been developed fi)r the synthesis of a bandwidth-limited controller for distributed

systems; an LQR-type controller is used as a baseline for simplicity. Many existing distributed com-

mand and control protocols require full connectivity in the communication graph [32] or do not



takeintoaccounttheeffectsofreducedconnectivitygraphs[27,29,30]. (Thecommunicationgraph
is a usefuldesigntool representingtheflowof informationin the network,whereeachvertexon
the graphrepresentsanelementin the systemandeachedgeconnectingtwo verticesrepresents
informationfow, eithersensedor transmitted,betweenthethetwovehicles.)Yook,et al [28] have

shown that such effects can be substantial. As a result, missions with large numbers of vehicles, 32

in the case of NASA's MAXIM [3], will require either substantially more communication/sensing

resources than those which currently exist, or command and control algorithms that use decreased

bandwidth. A combined synthesis procedure is proposed that will yield robust distributed con-

trollers and networks used by such controllers.

Given the standard LQR problem

J* = min lim 1 _0 TT_oo T (XT RzzX + uT Ruuu) dt

the weighting matrix Rxx balances the absolute state tracking and formation keeping by using the

performance output

Z = Cx = [XlT,... ,XTv,(X 1 -- x2)T, (Xl -- x3)T,... ,(XN_I -- zN)T] T

wherex [xL.. T= . ,ZN] . A performance weighting matrix Rzz is then used to weight each

portion of the distributed system by defining Rxx = CTRzzC. A distributed implementation of

the standard LQR controller requires a fully connected communications graph, which may not be

be feasible for satellites with limited communications and processing power. This work focuses

on finding a spanning tree (defined as a graph where there exists only one path between all pairs

of vertices) where each vertex represents a vehicle in the formation and each edge represents the

bidirectional sharing of state data between the the two vehicles. A spanning tree is chosen here

because it requires only N - 1 edges between the nodes, whereas a fully connected architecture

requires O(N 2) edges. It is assumed that all sub-trees of the optimal tree are themselves optimal.

This is provably true in the case of constant weights on the edges, i.e., the classic minimum spanning

tree (MST) problem, but not necessarily for our non-linear cost function J*(V, E) where V are the

nodes in the graph and E are the edges. Under such an assumption, the optimal tree can be

"grown" one node at a time using an algorithm similar to Prinfs [31]. This heuristic has been

shown to yield near optimal controllers for such trees.

Consider an network of N = 8 vehicles. We have used Hill's linear time-invariant dynamics [19]

with zero-mean white process noise that is uncorrelated across the vehicles in the network. We

restricted the performance weighting matrix to be block diagonal such that

x RxxX--  xTc, , + F, (x,- xj)
iEV i,jEV

i<j

where C_, Cij E R 6×6 and V is the set of vertices V = {1,..., N}. We chose/_ =/24, Cs = 10/6,

C12 = C_8 = 100/6, C13 = CTs = 1000/6, and all other Ci = C,j = /6, where In is the n by n

identity matrix. An additional constraint has been added that each node should have no more than

log2(N ) = 3 neighboring nodes. The resulting graph is shown in Figure 7. Note that the edges

with the higher weights, Cij _ I6, are preserved. Figure 8 shows the cost decrease as the edges are

added; the baseline fully-connected LQR cost is also shown for comparison.
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Fig. 7: Communications graph for a system of

N = 8 spacecraft

2.5 GPS Estimation Algorithms

Fig. 8: Demonstration that the tree cost ap-

proaches the baseline optimal LQR cost as the

tree is grown.

As the fleets become larger, the GN&C tasks become more and more onerous due to the increased

state size and available me_urement data. As a result, algorithmic decentralization becomes a

necessity to balance the computational load across the fleet and to manage the interspacecraft

communication [22]. This is true not only for the optimal planning, coordination and control,

but also for the fleet state estimation. State estimation for a fleet of many vehicles is challenging

from many perspectives. Firstly, the raw measurement data is typically collected in a decentralized

manner (i.e., each vehicle taking measurements that pertain only to its own state), strongly sug-

gesting a decentralized estimator to handle the data. Secondly, many of the estimation techniques

commonly used are non-linear and require the use of extended (often iterated) Kalman filters.

The Global Positioning System (GPS) has been extensively investigated for fleet state estimation

as part of the Orion project [20]. Recent work on GPS estimators for relative navigation using

Carrier-Phase Differential GPS (CDGPS) h'as resulted in <2.0 cm accuracy in relative position

and <0.5 mm/s in relative velocity [20]. Note that these results were obtained using a completely

decentralized estimation filter. The high accuracy results achieved in a decentralized architecture

validate that the relative GPS measurements taken on one vehicle can be treated as if they axe

entirely uncorrelated from the measurements taken on other vehicles. Thus the full fleet measure-

ment matrix, H, can be treated as block-diagonal and small coupling effects (such ms a differential

ionosphere) can be ignored if the fleet separation is less than 10 km.

While GPS can be used as effective sensor for many ground, air and space applications, its viabil-

ity relies on constant visibility of the NAVSTAR GPS constellation. For terrestrial applications,

this visibility can be interrupted by buildings or trees. In space, NAVSTAR visibility begins to

breakdown at high orbital altitudes such as those seen in highly elliptic or L2 orbits. Thus, a

measurement augmentation is desired to permit estimation through these spells of invisibility and

also to improve estimation accuracy when the NAVSTAR constellation is visible.

This _ugmentation can be achieved through the use of local ranging devices on each vehicle that

measure a scalar range and velocity between each pair of vehicles in the fleet [23, 21, 24]. Unfor-

tunately, however, the local range measurements taken by each vehicle are strongly correlated to

the measurements taken by every other vehicle, thus making the full fleet measurement matrix,

H, no longer block-diagonal and non-trivial to decentralize. In contrast to the GPS-only estima-

tion scenario which effectively decentralized for reasonably sized fleet separations, this estimation



problemdoesnot decorrelateat any level.Thuscaremustbe takento decentralizethe estima-
tion algorithmswhile retainingasmuchaccuracyaspossibleandkeepingthe computationand
interspacecraftcommunicationto aminimum.

A key milestone in recentworkwasthe designof variousdecentralizedestimationalgorithms
andarchitecturesthat extendthebasicGPSnavigationscenariobeyondLEO,intoMEOandbe-
yond[25].Usinga Schmidt-Kalman filter, reduced-order filters have been developed that produce

results that nearly replicate the centralized performance, while keeping communication and com-

putation to a minimum. Hierarchic methods have also been developed to mitigate the problem of

fleet scaling by dividing the fleet into small clusters.

2.6 Fault Detection

The fault detector is an on-board satellite agent within OA, the purpose of which is to determine

the status of the other satellites in the satellite formation and to report to the on-board satel-

lite controller whenever a satellite in the formation has failed. The design of the fault detector

communications network is similar to that of a token ring. The reason for this architecture is to

minimize the amount of information about the network each satellite has to store, and to minimize

the number of messages passed between satellites.

Each on-board satellite fault detector is initialized to know its successor in the ff_(_)_._ring. The first satellite to be instantiated as the ring initiator starts the ring [

protocol. The satellite initiating the ring protocol generates a packet called (_) (V)
a "token", and passes this token to its successor satellite. The successor _ /

satellite passes the token on to its successor satellite, and so on, as shown J
in Figure 9(a). The last satellite in the ring passes the token back to the

satellite that started the process; and the process is repeated ad infinitum.
(a) Nominal State

In the event of a single satellite failure, the ring network is designed to recon-

figure itself automatically to restore the broken ring. Each agent is running _,(_
an on-board timer. A fault is considered to have occurred when an agent's _ _'_

timer expires before the token is received from its predecessor (the timer is /
reset upon the receipt of the token). In the event of such a failure, the de- (_) --(_)

tecting agent notifies the rest of the network of the fimlt by passing an error //

token to the network. This token propagates in exactly the same way the •-
/

as the normal token. The error token contains the ID of the dead spacecraft

as well as the ID of the detecting spacecraft and because of the ring nature (b) Satellite Failure

of the network, the last spacecraft to receive the error token is always the

predecessor of the dead spacecraft. This spacecraft creates a connection to _,(_
the originating spacecraft, passes it a normal token and the network resumes ff_

normal operation. @_-_____@_i
For example, in Figure 9(b), the link between satellites 1 and 2 is broken since

satellite 1 has failed. The fault detector on satellite 2 detects this failure when •
its internal timer expires before receiving the token from satellite 1. It notifies

its controller, and sends an error message to satellite 3 stating that satellite (c) Ring Restored
1 has failed. Satellite 3's fault detector informs the controller that satellite 1

has failed, and relays this error message to satellite 4; again satellite 4's fault Fig. 9: Fault De-

detector notifies its controller of the network failure, but this time satellite 4 tector Modes

notices that satellite 1 is its successor satellite. Since satellite 2 was the originator of the error token
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(becausesatellite1 wasits predecessor),satellite4 nowreconfiguresitself to connectto satellite
2. Thering networkis nowrestored,shownin Figure9(c),andthe networkreturnsto nominal
operations.This frameworkiseasilyadaptableto anynumberofsatellites,howeverit isnot robust
to simultaneousfailuresin thenetwork.

2.7 ObjectAgent Development

To develop robust architectures for distributed satellite systems, our research encompasses both

the algorithm development and the software implementation. The fleet software is based on the

ObjectAgent (OA) framework that has been developed by Princeton Satellite Systems to increase

the reconfigurability, modularity and reliability of the overall control system. With its emphasis

on robustly handling communication between Agents that coordinate to complete complex tasks,

the OA software provides a natural framework for dew;loping these distributed autonomous GN&C

algorithms. ObjectAgent extends the classical method for writing spacecraft software by using

"software agents" as the basis of the system.

OA is a multi-threaded architecture for distributed systems. It uses message passing for thread

communication and can run on any POSIX compliant operating system. As shown in Fig. 10, there

are three tiers to the architecture: PostOffice, Agent, _md Skill. Agents are attached to PostOffices

and Skills are attached to Agents. Each entity is a separate POSIX thread. There may be any

number of PostOffices on a processor, and any number of processors in the system.

The Agent is the base unit for communication,

and all OA messages are passed between Agents.

Agents manage a set of user-defined Skills which

determine the functionality of the Agents. Gen-

erally, each Skill corresponds to one basic func-

tion, has inputs and outputs, and triggers one or

more actions. An Agent knows its list of Skills,

inputs, and outputs, and built-in functions enable

it to hunt for inputs and automatically configure

itself upon launch. In this sense, an ObjectA-

gent system is self-organizing. The PostOffice en-

ables seamless Agent communication throughout

the OA system. In particular, each PostOffice

manages a set of Agents, handles communication Fig. 10: ObjectAgent Architecture
between different processors via TCP/IP or the

user's choice of network protocol, and provides a framework for the dynamic creation of Agents.

The PostOffice network is a fully routed network and can be reconfigured on the fly. Each link

in the network can specify a separate network proto(ol, such as TCP/IP. Once the protocols _e

specified, Agent communication is transparent to the user; a Skill only needs to know the name of

the data and the Agent providing or needing it.

There are several features of the OA architecture that are specifically related to the GN&:C problem:

(i) message passing; (ii) modularity; (iii) reconfigurability; and (iv) robustness to software faults.The

flexible messaging architecture is a fundamental component of OA since it provides a reliable

method for Agent-to-Agent communication both on :_ single processor and across networks. The

inter-Agent messaging is handled by the PostOiYice, such that the PostOffice provides distributed

mutual exclusion services and efficient broadcast/dis[:overy services to its Agents. Each message

has both a creation and data timetag and input messages may be queued. Messages may be either
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point-to-pointbetweenAgentsorbroadcastbythePostOffice.Animportantresultofusingmessage
passingis that theAgentscaneasilybemonitoredor commanded.An OA GUI isprovidedwhich
canconnectto anOAsystemusingTCP/IP andallowsusersto viewandrecordthemessagesfor
anyPostOfficeandsendcommandsto anyAgent.

OAwasdesignedfor distributed systemsanddeveiopment.Developersat differentlocations
canwriteAgentsandSkillsandreliablycombinethem;theonlycomponentsthat mustbemanaged
arethedata interfaces,asin anysystem.Anotherkeyfeatureof OA is run-time reconfigura-
bility. Agentscanbedynamicallyloadedandunloadedwithouthavingto shutdownthe entire
softwaresystem.An AgentcanalsobedynamicallyassignednewSkills.This isachievedbypre-
compilingthe newAgentor Skill into a library. Thedynamicloadingof Agentsand PostOffices
allowsthe Agentnetworkto evolveovertime andfreesspacecraftoperatorsfrom the expensive
softwarepatchingprocess.ThePostOfficenetworkcanalsobereconfiguredat run-time.

ForOA to beusefulfor criticalsystemssuchasspacecraftcontrolsoftware,it mustberobustto
softwarefailures.OA isextremelyrobustandfault tolerantona Post-Officelevel,andmoderately
robustat theAgentlevel.Ideally,aruntimeerrorin anAgent'sSkillswouldcauseonlythat Agent
to terminatewithout affectingthe restof the Agentson thePostOffice;howeverthis is difficult
to achievein practice.A new feature of OAknownasAgentsandboxing,to becompletedin
early2003,will alloweachAgentto be in its ownmemoryspace.Sandboxinga critical Agent
will increaseits robustnessto failuresequivalentto thePostOfficelevelin exchangefor sacrificing
someperformance.Withoutsandboxing,run-timeerrorsthat occurwithinanAgentor Skillonone
PostOfficewill causethat PostOfficeandallofits Agentsto terminate.However,connectedPostOf-
ricesarenotbeaffectedsincePostOfficescangracefullyrecoverfromnetworkerrors.Althoughfault
toleranceis largelydependenton the userimplementation,OA provideshookswhereverpossible
to notify Agentsof problems,suchasa notificationthat anotherAgenthasdiedor returningan
undeliverablemessageto its sender.Agentscanalsoassessthestateof theprocessoronwhichthey
operateto determineif theyshouldpasstasksoff to anotherAgentin thesystem.

Theabovefeaturesapply to OA in general.Thefollowingspecificfeatureshavebeenaddedthis
yearwhichincreasetheflexibilityandefficiencyof thesoftware:

• Trueleast-costrouting,
• System-widedistributedmutualexclusion(DME),
• Removalof the Skill layer,
• TheAgentsandboxingdescribedabove.

Previousversionsof OA limitedPostOfficenetworksto atree,whileanarbitrarywebnowenables
least-costrouting.Thesystem-wideDMEprimitives,or mutexes,provideuserswith asimpleway
to limit accessto an externalresourcethat maybescarce.Onlyonethreadmayusea system-
wide mutexobjectat a time, and subsequentthreadsthat attemptto acquirethe mutexmust
blockuntil theholderreleasesit. Thiscouldbeusedto enforceround-robincommunicationamong
spacecraftbyensuringthat onlyonespacecraftisallowedto sendat atime,whilestill allowingany
spacecraftto decide,at anygiventime,that it needsto send.TheSkill layerwill no longerexist;
its functionalityhasbeenintegratedwith theAgentlayerfor a cleanerimplementation.Removing
the overheadof the Agentthreadsasanorganizationallayermakesthe softwaremoreefficient
and the implementationcleaner.This enablesAgentsto be arrangedin anyhierarchy,whereas
previouslySkillscouldnothavesubordinateSkills,andallowsAgentbehaviorsto becustomizedin
a straightforwardway.Finally,theAgentscannowbe"sandboxed"in their ownmemoryspace.A
sandboxedAgentwill nothavetheliabilityofaffectingtheentirePostOfficewhenafault occurs.A
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sandboxedAgentcanalsorun in a real-timeoperatingsystemandconnectto a PostOfficewithout
requiringaseparatepipeconstruct.

In summary,theOAsoftwareenvironmentprovidesthefollowingkeyattributesdirectlyrelatedto
theoverallgoalsof developinganautonomousGN&Csystem:

• Easilyallowsdifferentsoftwarearchitectures(includingdifferentcommunicationandcompu-
tationschemes)to bedefinedandcompared.

• Allowssoftwareto bequiteflexible,withobjectsthat canbedynamicallyloaded.
• Allowssoftwareto degradegracefully.
• Allowstransparencyintosoftwareoperationby monitoringAgentmessages.

Real-time Capabilities of OA: In general,real-timeapplicationsin the contextof control
requireareal-timeoperatingsystemandareal-timenetwork.OAis agenericsoftwarearchitecture
that canbe run usinganycombinationof platforms,operatingsystems,andnetworkprotocols.
Consequently,thedegreeofreal-timeguaranteefor anyapplicationrunningin OA is dependenton
theselectedprocessor,operatingsystem,andin the case of distributed control, network protocol.

In heterogeneous systems all of the components must be considered.

Since OA was built for any POSIX compliant operating system and not just real-time operating

systems, OA does not make use of any specific hard real-time calls. There are several options open

to developers for enforcing soft timing constraints. First, individual OA threads may be set at any

of the priority levels provided by the operating system. This could allow higher level threads to

block execution of lower threads. Second, each OA Skill thread can have a separate update rate.

Although the thread may be aperiodic and not depend on any update rate, it may also update very

rapidly in the case of a control thread or very slowly in the ca_e of planning thread. The timing

precision for standard operating systems on modern processors is generally in the millisecond range,

but there are no timing guarantees.

If timing precision greater than milliseconds and/or hard guarantees are required, that por-

tion of the application requiring hard real-time can be placed in a separate loop which takes

advantage of the hard real-time calls native to the operating system. A key recent mile-

stone was to demonstrate this using Real-Time Linux on the current testbed. RTLinux guar-

antees timed events will be predictable within a tolerance of approximately 15 #seconds, pro-

vided "non-realtime" activities such as dynamic memory allocation are not being performed [26].

The soft real time processes remain in OA, and

they communicate with the hard real-time process

via pipes. The control loop for this demonstra-

tion modeled a low-level control component that

generates a sequence of thruster commands. The

OA Planning Agent generates a set of pulsewidths

using a sinusoid, which are piped to the real-time

process. The "control law" passes the pulsewidth

data to a parallel port pin so it can be viewed by

an oscilloscope. The applied values are sent to

a display Agent which prints them to the screen. Fig. 11: Update rate with computer loading

All software was run on one computer, and during the demonstration, that computer is artificially

loaded with "find" processes to show the effects on both the OA Agents and the real-time control

loop. Figure 11 shows a snap shot of the output display on an oscilloscope. The plot shows many
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high-lowtransitionsrelatedto the simulatedthrusterpulsescloselyclustered(i.e., within 1 grid
mark)aroundzero,whichindicatesthat theupdaterateof thecontrolloopis accurateto within
±5 #seconds.

2.8 Hardware-In-The-Loop Testbed

Figure 12 showsthat the formationflying testbed is currently comprisedof three types
of OA agents: Simulation,Spacecraft,and Fault Detection. One agentperformsthe dy-
namicssimulationfor all spacecraftin the testbed, and there is a spacecraftagent and
a fault detectionagentfor eachspacecraftbeing simulatedin the fleet. The spacecraft
agent coordinatesall spacecraftsoftwarefunctions(e.g., control, planning, communication).
Fault detectionserviceshavebeenremovedto a separateagentfor operationalrobustness.
Theskillstructure(structurewithinagents)isar-
rangedto minimizetheeffortrequiredto addca- I*-* b_l .... lm_nic,tlo, path
pabilities to simulated spacecraft. Each skill is

responsible for a very specific algorithmic task,

with clearly defined inputs and outputs that ef-

fectively create "capability modules." The Simu-

lation agent contains a propagation skill that in-

puts thrust control and outputs the new states of

each spacecraft. Each spacecraft agent contains

an Executive skill that is the control system for

that spacecraft. The Executive skill receives state

telemetry from the simulation agent and returns

thruster commands to the simulation agent to be Fig. 12: Testbed OA Structure
applied to the appropriate spacecraft in the dy-

namic simulationl Figure 13 shows an example of one possible skill configuration wherein spacecraft

agents contain additional multi-tasked skills that perform tasks such as optimization, estimation,

and thruster mapping.

The physical structure of the testbed (i.e., where the software runs) is highly variable. For devel-

oping new software, the agents could all be run in a single computer. However, a more realistic

simulation would place the software for each spacecraft on a separate computer, with an additional

computer to simulate the vehicle motion and the environment (see Fig. 14). Switching between a

stand-alone and distributed configuration is very simple in this case, because the OA interprocess

and inter-computer communication are handled transparently by the same software interface, even

when the computers are at different universities. The multi-computer research presented here was

conducted between computers at Cornell and MIT. Thus far, all computers in the testbed have

been running Linux variants, however, it is possible that the testbed could combine computers

running the different operating systems that are supported by OA.

A key milestone achieved on this testbed was used the demonstration of a mission similar to

one segment of the MMS mission. Four spacecraft were arranged in a tetrahedron formation,

where the sides of the tetrahedron were each 10 km. The propagator used in the simulation agent

was a Runge-Kutta 7-8 routine that accounts for both J2 and drag for the osculating orbit. The

linear time-varying propagator discussed previously was used for the relative orbits. The initial

conditions of the satellites were chosen to create drift-free relative orbits that form a tetrahedron

configuration once per day (for an osculating orbit with a period of 24 hours). In this demonstration,

the simulation engine and four spacecraft are being run from five computers at Cornell and MIT.

14



o

t0p °

OA

c om m un_at:bn

• 4 ............. ,l-

Fig. 13: Internal Agent Structure Fig. 14: Testbed Physical Structure

Typical results are shown in Figure 15. While simulating the spacecraft and the dynamics, the

testbed tracks the communication used by each agent each spacecraft. Figure 16 shows a plot of

communication usage by each satellite after a full orbit. The lower half of the graph shows the

instantaneous number of bytes being sent (*) and received (+) by each satellite in the testbed. The

upper half of the graph shows the total number of bytes being sent by all agents over the history
of the simulation. The graph shows fewer bytes being sent than received, because messages with

multiple destinations have only been counted multiple times on receipt.
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During the demonstration, a catastrophic failure was inserted into one of the spacecraft. The failure
mechanism was the removal of that spacecraft's computer from the testbed network. The result was

an immediate drop in overall communications and complete loss of instantaneous communication
for the failed satellite. This demonstration shows the testbed's versatility as a tool for studying

different relevant mission classes from a variety of different perspectives. The framework provided

by OA proved to be particularly well suited to the development of the simulation and to the

monitoring of interprocess and network communications.

3 Relevant Publications Produced

See Refs. [6, 8, 25, 33, 34]

4 Significant Problems/Issues and Corrective Actions

None.
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5 Research Plans - Year 3

The primary focus so far has been on developing a full set of GN&C algorithms that can be

used to populate the various architectures, thereby enabling concrete comparisons of the various

implementation approaches. That work will wrap up early in year 3, with the results leading to a

full set of autonomous software tools for the fleet navigation and control. The following are specific

areas of work for the third year:

• Complete the evaluation of the navigation and control architectures (and algorithms) as a

function of the number of satellites.

• Full integration and verification of these algorithms in the distributed spacecraft OA testbed.

Use the full OA software architecture to measure the information flow and evaluate the algo-

rithm performance. This analysis will also consider communication uncertainties. Investigate

the real-time behavior of the full architectures and algorithms to ensure deterministic and

reliable fleet operations.

• Finalize a version of the autonomous decentralized control/networking approach using graph

theoretic methods, and implement the approach on the OA testbed.

• Several support functions for the autonomy of satelhte clusters using OA will be developed,

implemented in OA, and studied more fully. These include fault detection using heartbeat

and token approaches, resource allocation, communication efficiency including that related to

real time implementation using several underlying protocols, and system security.

• Extend the current planning algorithms: examine the elhptical minimum-fuel problem; col-

lision avoidance in an eccentric orbit; large reference orbit maneuvers; extension to include

non-spherical gravitational effects.

• Extend the analysis of the nonlinearity correction to formations in orbits with large ec.centric-

ities, such as MMS. The approach described in the report derives the nonlinearity correction

by separating the nonlinear affects of the baseline separation from the orbit eccentricity. How-

ever, simulation results have shown that this leads to corrections terms that actually increase

the drift rate rather than reducing it. However, we will first need to establish the poten-

tial benefits of this extra analysis, because the same simulations show that simply using the

eccentricity correction yields very good results.

5.1 Real-time Software Code in C Milestone

We have started to transition the algorithms from the previous MATLAB testbed so that they

can be executed in C on the OA testbed. That activity will continue, resulting in a full set of

GNC algorithms written in C that can be combined in various architectures across the distributed

spacecraft fleet. This includes software for the navigation, control, and fault detection algorithms.

5.2 Future ObjectAgent Work

Additional work will be performed in the area of monitoring OA threads for performance. Several

third-party tools will be investigated for this purpose and some type of performance monitoring

will be added to the existing OA monitoring GUI. Other areas of investigation include an artificial

intelligence library for use in Agents, tutorials for Agent hierarchies and other new features, and

universal timing for synchronizing Agents across the network.

The sandboxing of Agents, which will be complete in early 2003, Will allow the real-time control loop

of the demo to be an actual Agent. The sandboxing code allows a separate process to behave as if it

is part of the local PostOifice using a pipe construct similar to that described above. A sandboxed
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Agenton a real-timeoperatingsystemwill beableto useinterruptsto regulatea Skill's update
rate.This will allowfutureversionsof thedemoto becompletelywithin theOA architecture.

6 Top-level Schedule

TheprimarymilestonesforYear3 are:

• Finalizethe architectureanalysisand algorithmdesignfor the samplemissionscenarios,
suchasthe MMSmission(August2003).Codeanddemonstratethesealgorithmson the
distributedOA testbed.Developa large-scaledemonstrationof the integratednavigation,
fleetcoordination,andvehiclecontrolusingthevariouscomputersavailableat MIT, Cornell,

and PSS (Feb 2004).

• Demonstrate support functions in OA (fault detection, allocation, security) (May 2003).

• Extend the GNC algorithms to account for errors/uncertainty in the dynamics and envi-

ronmental models by directly including robustness and adaptation (December 2003) and

demonstrate these enhancements on the OA testbed (March 2004).

• Complete the analysis of the nonlinearity correction to formations in orbits with large eccen-

tricities (May 2003) and apply it to the MMS type mission (January 2004).

• Finalize robust Keplerian based planner (May 2003), and demonstrate these enhancements

on the OA testbed using an MMS type mission (December 2003).

• Complete an initial version of the autonomous decentralized control/networking approach

using graph theoretic methods (December 2003), and implement the approach on the OA

testbed using a MAXIM, Stellar Imager or other similar mission (March 2004).
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